

Review: State Machine Charts

- SM chart or ASM (Algorithmic State Machine) chart
- Easier to understand the operation of digital system by examining of the SM chart instead of equivalent state graph
- SM chart leads directly to hardware realization

[^0]
Constraints on Input Labels

- Assume: I - input expression => we traverse the arc when $\mathrm{I}=1$

1. If I_{i} and If_{j} are any pair of input labels on arcs exiting state 5 k , then $\mathrm{I}_{\mathrm{i}} \mathrm{I}_{\mathrm{j}}$ - 0 ifit \ddagger.

Assures that at most one input label can be 1 at any given time
2. If n arcs exit state 5_{k} and the n arcs have input labels $\mathrm{I}_{1}, \mathrm{I}_{2}, \ldots$, In. respectively, then $\mathrm{I}_{1}+\mathrm{I}_{2}+\ldots+\mathrm{I}_{n}=1$.

Assures that at least one input label will be 1 at any given time
$1+2$: Exactly one label will be $1=>$
the next state will be uniquely defined for every input combination

Constraints on Input Labels (cont'd)

21/07/2003 UAH-CPE/EE 422/522 ©AM
14

Networks for Arithmetic Operations
Case Study: Serial Parallel Multiplier

Note: we use unsigned binary numbers

Block Diagram of a Binary Multiplier

Ad - add signal // adder outputs are stored into the ACC
Sh - shift signal // shift all 9 bits to right
Ld - load signal // load multiplier into the 4 lower bits of the ACC and clear the upper 5 bits
21/07/2003
UAH-CPE/EE 422/522 ©AM

Multiplier Control with Counter

- Current design: control part generates the control signals (shift/add) and counts the number of steps
- If the number of bits is large (e.g., 64), the control network can be divided into a counter and a shift/add control

Array Multiplier (cont'd)

- Complexity of the N -bit array multiplier
- number of AND gates = ?
- number of $\mathrm{HA}=$?
- number of FA = ?
- Delay
- tg - longest AND gate delay
- tad - longest possible delay through an adder

Multiplication of Signed Binary Numbers

- How to multiply signed binary numbers?
- Procedure
- Complement the multiplier if negative
- Complement the multiplicand if negative
- Multiply two positive binary numbers
- Complement the product if it should be negative
- Simple but requires more hardware and time than other available methods

Multiplication of Signed Binary Number
- Four cases - Multiplicand is positive, multiplier is positive - Multiplicand is negative, multiplier is positive - Multiplicand is positive, multiplier is negative - Multiplier is negative, multiplicand is negative - Examples - Preserve the sign of the partial product $-0111 \times 0101=$? at each step $-1101 \times 0101=$? If multiplier is negative, complement $-0101 \times 1101=$? the multiplicand before adding it in at $-1011 \times 1101=$? the last step
21/072003 UAH-CPEEE 422/522 ©AM

Command File and Simulation										
- csermand fia to iant vignad mulipiza Int CLX St Staba A E Dens Product ferse et 12,022 forme ck 19. 010 - wrean 20 $-\left(2 / 85^{*}+3 / 6\right)$ ferse Pkand 3201 Frorse Petkr 1101 กy. 129										
	ns	delta	CLK	St	Seate	${ }^{\text {a }}$	a	Done	Protuct	
	a	+1	1	D	D	\$060	3600	D	1000000	
	2	$+10$	1	1	D	1006	atco	D	4000000	
	13	+0	4	1	D	\$006	2500	D	1000000	
	20	$+1$	1	1	1	0060	3101	b	v000000	
	22	+0	t	5	3	teeo	3102	b	*eceoss	
	33	+10	9	0	1	to6e	3301	0	t000000	
	43	+1	t	D	2	s030	1110	D	t000000	
	50	+ 0	a	0	2	toub	3710	0	1600000	
	63	+1	1	0	5	206s	4131	0	*60000]	
	70	+0	4	0	3	Toti	4111	D	4000000	
	*	+1	t	6	4	4601	4011	b	*60000)	
	93	+ 0	4	0	4	4011	2011	b	2000000	
	103	+2	t	6	5	1111	S601	1	111000 L	
	114	$+0$	0	0	5	1111	3601	1	111000 L	
	129	+1	1.	6	-	117	\$061	-	1110001	
21/07/2003	UAH-CPE/EE 422/522 @AM									36

[^0]: ## State Graphs for Control Networks

 - Use variable names instead of 0s and 1s
 - E.g., XiXj/ZpZq
 - if Xi and Xj inputs are 1 , the outputs Zp and Zq are 1 (all other outputs are 0 s)
 - E.g., X = X1X2X3X4, Z = Z1Z2Z3Z4
 - X1X4' ${ }^{\prime}$ Z2Z3 $==1$ - - $0 / 0110$

